Evaluation of direct and cooperative contributions towards the strength of buried hydrogen bonds and salt bridges.

نویسندگان

  • S Albeck
  • R Unger
  • G Schreiber
چکیده

An experimental approach to evaluate the net binding free energy of buried hydrogen bonds and salt bridges is presented. The approach, which involves a modified multiple-mutant cycle protocol, was applied to selected interactions between TEM-1-beta-lactamase and its protein inhibitor, BLIP. The selected interactions (two salt bridges and two hydrogen bonds) all involving BLIP-D49, define a distinct binding unit. The penta mutant, where all side-chains constructing the binding unit were mutated to Ala, was used as a reference state to which combinations of side-chains were introduced. At first, pairs of interacting residues were added allowing the determination of interaction energies in the absence of neighbors, using double mutant cycles. Addition of neighboring residues allowed the evaluation of their cooperative effects on the interaction. The two isolated salt bridges were either neutral or repulsive whereas the two hydrogen bonds contribute 0.3 kcal mol(-1 )each. Conversely, a double mutant cycle analysis of these interactions in their native environment showed that they all stabilize the complex by 1-1.5 kcal mol(-1). Examination of the effects of neighboring residues on each of the interactions revealed that the formation of a salt bridge triad, which involves two connected salt bridges, had a strong cooperative effect on stabilizing the complex independent of the presence or absence of additional neighbors. These results demonstrate the importance of forming net-works of buried salt bridges. We present theoretical electrostatic calculations which predict the observed mode of cooperativity, and suggest that the cooperative networking effect results from the favorable contribution of the protein to the interaction. Furthermore, a good correlation between calculated and experimentally determined interaction energies for the two salt bridges, and to a lesser extent for the two hydrogen bonds, is shown. The data analysis was performed on values of DeltaDeltaG(double dagger)K(d) which reflect the strength of short range interactions, while DeltaDeltaG(o)K(D) values which include the effects of long range electrostatic forces that alter specifically DeltaDeltaG(double dagger)k(a) were treated separately.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical Study of Heteroatom Resonance-Assisted Hydrogen Bond: Effect of Substituent on π-delocalization

The concept of Resonance Assisted Hydrogen Bond (RAHB), which usually occurs in b diketons, has a remarkable role in chemistry. These molecules, which contain heteroatom particularly O and N, are species with biological interest in protein folding and DNA pairing. Therefore, the amplification of hydrogen bonds strength by substituents may be important in life scie...

متن کامل

Evidence of turn and salt bridge contributions to beta-hairpin stability: MD simulations of C-terminal fragment from the B1 domain of protein G.

We ran and analyzed a total of eighteen, 10 ns molecular dynamics simulations of two C-terminal beta-hairpins from the B1 domain of Protein G: twelve runs for the last 16 residues and six runs for the last 15 residues, G41-E56 and E42-E56, respectively. Based on their CalphaRMS deviation from the starting structure and the pattern of stabilizing interactions (hydrogen bonds, hydrophobic contact...

متن کامل

Salt-Bridge Energetics in Halophilic Proteins

Halophilic proteins have greater abundance of acidic over basic and very low bulky hydrophobic residues. Classical electrostatic stabilization was suggested as the key determinant for halophilic adaptation of protein. However, contribution of specific electrostatic interactions (i.e. salt-bridges) to overall stability of halophilic proteins is yet to be understood. To understand this, we use Ad...

متن کامل

Hydrogen bonds and salt bridges across protein-protein interfaces.

To understand further, and to utilize, the interactions across protein-protein interfaces, we carried out an analysis of the hydrogen bonds and of the salt bridges in a collection of 319 non-redundant protein-protein interfaces derived from high-quality X-ray structures. We found that the geometry of the hydrogen bonds across protein interfaces is generally less optimal and has a wider distribu...

متن کامل

Supporting Material From Static Structure to Living Protein: Computational Analysis of Cytochrome c Oxidase Main-chain Flexibility

ProFlex calculates a hydrogen-bond dilution profile (1). To calculate the profile, the protein’s hydrogen bonds are broken one by one, from weakest to strongest (according to the potential energy formula described below), and the constraint counting algorithm is run after each bond is broken. This simulates incremental thermal denaturation of the structure, as the calculated temperature rises a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 298 3  شماره 

صفحات  -

تاریخ انتشار 2000